Acta Cryst. (1992). C48, 1888-1894

Dimeric Nickel(II) Carboxylates and a Silanecarboxylate: [Ni(Me₃CCOO)₂(2,5lutidine)]₂, [Ni(MePh₂CCOO)₂(quinoline)]₂.-2CHCl₃, [Ni(Me₂PhCCOO)₂(quinoline)]₂, [Ni(Me₃CCOO)₂(2-ethylpyridine)]₂. [Ni(Me₃CCOO)₂(2-picoline)]₂ and [Ni(MePh₂SiCOO)₂(Ph₃P)]₂

MITSUO MOROOKA AND SHIGERU OHBA

Department of Chemistry. Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku. Yokohama 223, Japan

MICHIO NAKASHIMA, TADASHI TOKII AND YONEICHIRO MITTO

Department of Chemistry. Faculty of Science and Engineering, Saga University, Saga 840, Japan

MICHINOBU KATO

Aichi Prefectural University, Mizuho-ku, Nagoya 467, Japan

OMAR W. STEWARD

Department of Chemistry, Duquesne University, Pittsburgh, PA 15282, USA

(Received 3 March 1992; accepted 27 May 1992)

Abstract

The structures of five dimeric Ni^{II} carboxylates and one dimeric Ni^{II} silanecarboxylate have been determined: (I), tetrakis(μ -2,2-dimethylpropanoato-O,O')-bis(2,5-lutidine)dinickel, $[Ni(C_5H_9O_2)_2(C_7H_9N)]_2$; (II), tetrakis(μ -2,2-diphenylpropanoato-O,O')-diquinolinedinickel bis-(trichloromethane), $[Ni(C_{15}H_{13}O_2)_2(C_9H_7N)]_2.2CHCl_3;$ tetrakis(μ -2-methyl-2-phenylpropanoato-O,O')-**(III)**. diquinolinedinickel, $[Ni(C_{10}H_{11}O_2)_2(C_9H_7N)]_2$; (IV), tetrakis(μ -2,2-dimethylpropanoato-O,O')-bis(2-ethylpyridine)dinickel, [Ni(C5H9O2)2(C7H9N)]2; (V), tetrakis- $(\mu$ -2,2-dimethylpropanoato-O,O')-bis(2-picoline)dinickel, $[Ni(C_5H_9O_2)_2(C_6H_7N)]_2$; (VI), tetrakis (μ -methyl diphenylsilanecarboxylato-O,O')-bis(triphenylphosphine)dinickel, $[Ni(C_{14}H_{13}O_2Si)_2(C_{18}H_{15}P)]_2$. The Ni atoms are arranged in a square-pyramidal geometry and the Ni₂(COO)₄ moiety forms a slightly distorted cage structure. The Ni · · · Ni distances are in the range 2.7079(8)-2.765(1) Å.

Comment

Dimeric Cu^{II} carboxylates show antiferromagnetism as a result of spin superexchange between the two metal centers through the carboxylate bridges; the magnitude of the spin-exchange interaction depends on the electric structure of the carboxylate bridges (Yamanaka et al., 1991). The cryomagnetic behavior of the Ni^{II} dimers resembles that of the corresponding Cu^{II} dimers (Bencini, Benelli, Gatteschi & Zanchini, 1980; Hirashima et al., 1990) although the nature of the demagnetization has yet to be clarified. Structural data have been reported for the Ni^{II} carboxylate dimers, [Ni(Me₃CCOO)₂L]₂ with L =2-methylquinoline (Kirillova et al., 1980) and L = 2.4lutidine (Hirashima et al., 1990). In the present paper, the structures of six Ni^{II} dimers are reported. Magnetic susceptibility measurements indicate that the demagnetization in [Ni(Me₃CCOO)₂(2.5-lutidine)]₂ (I) is smaller than in the 2,4-lutidine adduct (Hirashima et al., 1990). However, no notable differences were found between the dimensions of the Ni₂(COO)₄ cages and further investigations are required to establish the relationship between structure and magnetism. Although silanecarboxylate bridges significantly enhance the antiferromagnetism of the Cu^{II} dimers (Uekusa et al., 1990), their effect in the Ni^{II} dimers is not currently well defined.

The complexes (I)-(VI) all have a crystallographic center of symmetry. The Ni atom has a slightly distorted square-pyramidal environment with four O atoms of the bridging carboxylates in the basal plane and an N or P atom in the axial position. The two Ni atoms in the complexes are shifted in the opposite direction from the O_4 basal plane by 0.243(1)-0.274(1) Å. The cage of the

R L 2.5-Lutidine Me₂C (1) MePh₂C (1)Quinoline Me₂PhC (III) Quinoline 2-Ethylpyridine (IV) Me₃C 2-Picoline Me₃C (V) MePh₂Si (VI)Ph₃P

© 1992 International Union of Crystallography

(IV)

(V)

Fig. 1. Views of the molecules with thermal ellipsoids scaled at 20% probability level. The H atoms are omitted for clarity.

 $Ni_2(COO)_4$ moiety is deformed in one of the carboxylate planes. A comparison of (III) with the corresponding Cu^{II} complex, [Cu(Me₂PhCCOO)₂(quinoline)]₂ (Uekusa *et al.*, 1990), shows that the Ni—N bond is 0.180(3) Å shorter than Cu—N, suggesting a stronger bond, and that on average the Ni—O bonds are longer than Cu—O by 0.040(2) Å.

Experimental Compound (I) Crystal data [Ni(C₅H₉O₂)₂(C₇H₉N)]₂ $M_r = 736.2$ Monoclinic C2/c

Density measured by flotation in KI solution Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

a = 20.520 (2) Å	Cell parameters from 49	011—Ni—012	165.7 (1)	O22—Ni—Ni ⁱ	69.12 (9)
b = 10.647 (1) Å	reflections	O11-Ni-O21	91.0 (1)	N—Ni—Ni ⁱ	160.8 (1)
c = 18260(2) Å	$\theta = 10 - 15^{\circ}$	011—Ni—022	88.6 (1)	Ni-011-C11	124.0 (3)
c = 10.200 (2) R	$u = 0.0013 \text{ mm}^{-1}$	O11—Ni—N	101.1 (1)	Ni-012-C11 ¹	124.5 (3)
p = 91.013 (8)	$\mu = 0.9913 \text{ mm}$	O11—Ni—Ni	83.4 (1)	Ni	109.0 (3)
V = 3988.8 (7) A ³	I = 299 K	012—N1—021	88.3 (1)	Ni=022=-C21	140.9 (3)
Z = 4	Prism	012-Ni-022	88.4 (1)	OII - CII - CI2	117.4 (4)
$D_{\rm x} = 1.226 \ {\rm Mg \ m^{-3}}$	$0.37 \times 0.35 \times 0.25 \text{ mm}$	012 Ni Ni ⁱ	93.0(1)	$C_{12} = C_{11} = O_{12}^{i}$	125.5 (4)
$D_{\rm m} = 1.22$ (2) Mg m ⁻³	Dark green	012 - Ni - Ni	165 4 (1)	021 021 022	117.1 (5)
D_m 1.22 (2) Mg III	Dan Broom	021 - Ni - 022 021 - Ni - N	103.4(1) 102.2(1)	$021 - 021 - 022^{i}$	116.5 (4)
Data collection		021—Ni—Ni ⁱ	96.30 (9)	$C_{22} = C_{21} = O_{22}^{i}$	1169(4)
		022—Ni—N	92.2 (1)		110.5 (1)
Rigaku AFC-5 four-circle	$R_{\rm int}=0.016$		/=== (=/		
diffractometer	$\theta_{\rm max} = 27.5^{\circ}$	Symme	etry code: (i)	1/2 - x, 1/2 - y, -z	2.
θ -2 θ scans	$h = -26 \rightarrow 26$				
Absorption correction:	$k = 0 \rightarrow 12$				
by integration from crystal	$l = 0 \rightarrow 23$	Compound (11)			
shape	5 standard reflections	Crystal data			
$T_{\rm min} = 0.71, \ T_{\rm max} = 0.79$	monitored every 100	$[Ni(C_{15}H_{12}O_{2})_{2}(C_{15}H_{12}O_{2$	H-N)	$D_{m} = 1.38$ (1) Mg	m ⁻³
3930 measured reflections	reflections	2CHCl	9-1/1 ()]2.	Density measured	by flota-
3803 independent reflections	intensity variation: 1.8%	M = 15155		tion in athenol/	totro
2123 observed reflections		$m_r = 1515.5$		ablementation	icua-
$f = \frac{1}{2} - f = \frac{1}{2}$		Inclinic		cniorometnane	
$[\mathbf{r}_o > 5\sigma(\mathbf{r}_o)]$		<i>P</i> 1		Mo $K\alpha$ radiation	
D - f		a = 13.231 (1) Å		$\lambda = 0.71073 \text{ A}$	
Kennement		<i>b</i> = 13.857 (1) Å		Cell parameters fr	om 36
Refinement on F	All H-atom parameters re-	c = 11.425 (1) Å		reflections	
Final $R = 0.043$	fined	$\alpha = 99.48 (1)^{\circ}$		$\theta = 10 - 15^{\circ}$	
wR = 0.031	Calculated weights, $w=1/\sigma$	$\beta = 104.63(1)^{\circ}$		$\mu = 0.790 \text{ mm}^{-1}$	
S = 2.290	$(\Delta/\sigma)_{\rm max} = 0.056$	$\gamma = 109.68 (1)^{\circ}$		T = 297 K	
2123 reflections	$\Lambda_{0} = 0.46 \text{ e} \text{ Å}^{-3}$	V = 1835.3 (3) Å	3	Prism	
316 parameters	$\Delta_{2} = -0.32 \circ h^{-3}$	Z = 1		$0.60 \times 0.50 \times 0.2$	20 mm
510 parameters	$\mu_{\rm mm} = -0.52 \ {\rm cm}$	$D_{\rm x} = 1.371 {\rm Mg}{\rm m}$	1 ⁻³	Yellow	

Table 1. Fractional atomic coordinates and equivalentisotropic thermal parameters (Å²) for (I)

	$U_{ m eq}$	$= \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^*$	[*] a _i .a _j .	
	x	у	z	U_{ea}
Ni	0.24203 (3)	0.62747 (5)	0.51891 (3)	0.0487 (2)
011	0.1870 (2)	0.6998 (3)	0.5976 (2)	0.062 (1)
012	0.2972 (2)	0.5989 (3)	0.4304 (2)	0.061 (1)
021	0.1626(1)	0.5965 (3)	0.4550 (2)	0.062(1)
022	0.3222 (2)	0.7027 (3)	0.5709 (2)	0.065 (1)
N	0.2609 (2)	0.4535 (3)	0.5600 (2)	0.048 (1)
C1	0.2181 (3)	0.3702 (5)	0.5856 (2)	0.055 (2)
C2	0.2389 (4)	0.2480 (6)	0.6027 (3)	0.075 (3)
C3	0.3017 (4)	0.2144 (6)	0.5954 (3)	0.080 (3)
C4	0.3466 (3)	0.2991 (6)	0.5720 (3)	0.067 (2)
C5	0.3233 (3)	0.4172 (5)	0.5548 (3)	0.055 (2)
C6	0.1498 (3)	0.4111 (7)	0.5946 (4)	0.082 (3)
27	0.4189 (4)	0.2725 (9)	0.5664 (6)	0.110 (4)
C11	0.1789 (2)	0.8156 (5)	0.6075 (3)	0.050 (2)
C12	0.1382 (3)	0.8552 (6)	0.6725 (3)	0.070 (2)
C13	0.1051 (6)	0.745 (1)	0.7073 (6)	0.131 (5)
C14	0.0890 (5)	0.953 (1)	0.6469 (6)	0.127 (5)
C15	0.1851 (5)	0.9167 (9)	0.7283 (4)	0.112 (4)
221	0.1478 (2)	0.6960 (5)	0.4222 (2)	0.049 (2)
222	0.0899 (3)	0.6946 (5)	0.3691 (3)	0.068 (2)
223	0.0516 (8)	0.810(1)	0.373 (1)	0.22 (1)
224	0.048 (1)	0.586 (2)	0.381 (2)	0.29 (2)
C25	0.1133 (7)	0.678 (4)	0.2982 (8)	0.36 (2)

Table 2. Geometric parameters (Å, °) for (I)

Ni--011 Ni--012

Ni-021 Ni-022

Ni—N Ni—Niⁱ Data collection Rigaku AFC-5 four-circle diffractometer ω scans Absorption correction: by integration from crystal shape $T_{min} = 0.64, T_{max} = 0.79$ 8757 measured reflections 8408 independent reflections 5847 observed reflections $[|F_o|>3\sigma(|F_o|)]$

Refinement

```
Refinement on F
Final R = 0.081
wR = 0.087
S = 6.176
5847 reflections
545 parameters
```

Prism $0.60 \times 0.50 \times 0.20 \text{ mm}$ Yellow $R_{\text{int}} = 0.014$ $\theta_{\text{max}} = 27.49^{\circ}$ $h = -17 \rightarrow 17$ $k = -17 \rightarrow 0$ $l = -14 \rightarrow 14$ 5 standard reflections

stanuaru reneccions
monitored every 100
reflections
intensity variation: 1.8%

All H-atom parameters re-
fined
Calculated weights, $w=1/\sigma$
$(\Delta/\sigma)_{\rm max} = 0.484$
$\Delta \rho_{\rm max} = 1.194 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.571 \ {\rm e} \ {\rm \AA}^{-3}$

Table 3. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) for (II)

$U_{\text{eq}} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

1.997 (3)	011C11	1.258 (6)		x	у	z	U_{co}
2.013 (3)	O12—C11 ¹	1.250 (6)	Ni	-0.00021 (8)	0.02506 (8)	0.12216 (9)	0.0243 (4)
2.015 (3)	O21-C21	1.252 (6)	011	0.1496 (4)	0.0088 (4)	0.1654 (4)	0.034 (2)
2.048 (3)	O22—C21 ⁱ	1.248 (6)	012	-0.1547 (4)	0.0213 (4)	0.0305 (4)	0.038 (2)
2.034 (3)	C11—C12	1.523 (7)	O21	0.0802 (4)	0.1635 (4)	0.0835 (4)	0.039 (2)
2.7202 (8)	C21-C22	1.520 (7)	O22	-0.0736 (4)	-0.1296 (4)	0.1173 (4)	0.039 (2)

ordinates and equivale neters (\AA^2) for (I)

Monoclinic

N	0.0218 (5)	0.1009 (5)	0.2997 (5)	0.034 (3)
Cl	0.1234 (8)	0.1787 (7)	0.3620 (8)	0.047 (4)
C2	0.1609 (9)	0.2309 (8)	0.4911 (8)	0.062 (4)
C3	0.0891 (9)	0.1970 (8)	0.5576 (8)	0.061 (5)
C4	-0.0197 (7)	0.1180 (7)	0.4962 (7)	0.043 (4)
C5	-0.099 (1)	0.0798 (9)	0.5611 (9)	0.057 (5)
C6	-0.202(1)	0.006(1)	0.498 (1)	0.069 (6)
C7	-0.2392(8)	-0.0372 (8)	0.3654 (9)	0.063 (5)
C8	-0.1655 (7)	-0.0079 (7)	0.3022 (8)	0.045 (4)
C9	-0.0552 (7)	0.0710 (6)	0.3658 (7)	0.035 (3)
C101	0.1972 (6)	-0.0058 (6)	0.0853 (6)	0.029 (3)
C102	0.3164 (6)	-0.0072 (6)	0.1332 (6)	0.031 (3)
C103	0.3808 (9)	0.026(1)	0.043 (1)	0.051 (5)
C104	0.2957 (6)	-0.1220 (6)	0.1383 (7)	0.035 (3)
C105	0.2453 (7)	-0.1627 (7)	0.2205 (8)	0.045 (4)
C106	0.2277 (9)	-0.2647 (9)	0.230(1)	0.061 (5)
C107	0.259(1)	-0.3299 (9)	0.155 (1)	0.076 (6)
C108	0.310(1)	-0.292 (1)	0.073 (1)	0.089 (7)
C109	0.3279 (9)	-0.1870 (9)	0.065 (1)	0.067 (5)
C110	0.3869 (6)	0.0733 (6)	0.2623 (7)	0.035 (3)
C111	0.3771 (7)	0.1684 (7)	0.2963 (8)	0.044 (4)
C112	0.4446 (8)	0.2443 (8)	0.4094 (9)	0.061 (5)
C113	0.524 (1)	0.2221 (9)	0.494 (1)	0.079 (5)
C114	0.5387 (9)	0.1283 (9)	0.4614 (9)	0.077 (5)
C115	0.4689 (8)	0.0542 (7)	0.3459 (9)	0.056 (4)
C201	0.1010 (6)	0.1920 (6)	-0.0102 (7)	0.033 (3)
C202	0.1600 (6)	0.3116 (6)	0.0038 (7)	0.035 (3)
C203	0.0654 (9)	0.3420 (9)	-0.068 (1)	0.058 (5)
C204	0.2114 (8)	0.3749 (6)	0.1455 (7)	0.043 (4)
C205	0.3273 (8)	0.4189 (7)	0.2080 (8)	0.052 (4)
C206	0.369 (1)	0.4760 (9)	0.334 (1)	0.073 (5)
C207	0.300(1)	0.4886 (9)	0.398 (1)	0.079 (6)
C208	0.187 (1)	0.445 (1)	0.336 (1)	0.086 (7)
C209	0.140(1)	0.3883 (9)	0.210(1)	0.066 (5)
C210	0.2542 (7)	0.3298 (6)	-0.0578 (7)	0.041 (4)
C211	0.3170 (8)	0.2677 (7)	-0.0511 (9)	0.055 (4)
C212	0.4046 (9)	0.2826 (9)	-0.101 (1)	0.077 (6)
C213	0.425 (1)	0.365(1)	-0.160 (1)	0.101 (8)
C214	0.368 (1)	0.427 (1)	-0.169 (1)	0.080 (7)
C215	0.2804 (9)	0.4107 (8)	-0.1152 (9)	0.060 (5)
C301	-0.2043 (5)	0.3083 (4)	0.3253 (4)	0.249 (2)
Cl1	-0.3345 (7)	0.304 (2)	0.2630 (8)	0.249 (2)
Cl2	-0.150 (2)	0.254 (1)	0.258 (1)	0.249 (2)
C13	-0.132 (2)	0.4571 (4)	0.326 (1)	0.249 (2)
C14	-0.1328 (9)	0.322 (1)	0.4557 (6)	0.249 (2)

$P2_1/n$	$\lambda = 0.71073 \text{ Å}$
a = 10.992 (1) Å b = 20.932 (1) Å c = 10.964 (1) Å $\beta = 90.587 (5)^{\circ}$ $V = 2522.5 (3) \text{ Å}^{3}$ Z = 2 $D_{x} = 1.354 \text{ Mg m}^{-3}$ $D_{m} = 1.31 (2) \text{ Mg m}^{-3}$	Cell parameters from 38 reflections $\theta = 10-15^{\circ}$ $\mu = 0.804 \text{ mm}^{-1}$ T = 300 K Plate $0.60 \times 0.25 \times 0.10 \text{ mm}$ Dark green
Data collection	
Rigaku AFC-5 four-circle diffractometer ω scans Absorption correction: by integration from crystal shape $T_{min} = 0.82, T_{max} = 0.92$ 4671 measured reflections 4431 independent reflections 3029 observed reflections $[F_o >3\sigma(F_o)]$	$R_{int} = 0.014$ $\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 13$ $k = 0 \rightarrow 24$ $l = -13 \rightarrow 13$ 5 standard reflections monitored every 100 reflections intensity variation: 1.8%

Refinement

N C1 C2 C3 C4 C5 C6 C7 C8

C9 C101 C102 C103 C104 C105 C106

C107 C108 C109 C110

C201

C202 C203

C204

C205

Refinement on F	All H-atom parameters re-
Final $R = 0.041$	fined
wR = 0.026	Calculated weights, $w=1/\sigma$
S = 1.726	$(\Delta/\sigma)_{\rm max} = 0.068$
3029 reflections	$\Delta \rho_{\rm max} = 0.276 \ {\rm e} \ {\rm \AA}^{-3}$
432 parameters	$\Delta \rho_{\min}$ = -0.335 e Å ⁻³

Table 5. Fractional atomic coordinates and equivalentisotropic thermal parameters (Å²) for (III)

Table 4. Geometric parameters (Å, °) for (II)

	-	-	
Ni-011	2.016 (6)	O11-C101	1.26 (1)
Ni012	2.026 (5)	O12—C101 ¹	1.249 (8)
Ni	2.037 (5)	O21-C201	1.26(1)
Ni-022	2.018 (5)	O22-C201 ⁱ	1.261 (9)
Ni—N	2.024 (6)	C101-C102	1.54 (1)
Ni—Ni ⁱ	2.765 (1)	C201-C202	1.54 (1)
011—Ni—012	164.2 (2)	O22—Ni—Ni ⁱ	92.7 (2)
O11-Ni-O21	87.6 (2)	N—Ni—Ni ⁱ	165.0 (2)
O11-Ni-O22	87.0 (2)	Ni-011-C101	123.0 (4)
O11—Ni—N	95.6 (2)	Ni—O12—C101 ⁱ	126.6 (6)
O11—Ni—Ni ⁱ	83.8 (1)	Ni-O21-C201	137.3 (4)
O12—Ni—O21	91.3 (2)	Ni-022-C201 ⁱ	112.7 (5)
O12—Ni—O22	89.9 (2)	O11-C101-C102	117.6 (6)
O12—Ni—N	100.2 (3)	O11—C101—O12 ⁱ	125.3 (7)
O12—Ni—Ni ⁱ	80.9 (2)	C102—C101—O12 ⁱ	117.1 (7)
O21—Ni—O22	164.3 (2)	O21-C201-C202	118.4 (6)
O21—Ni—N	92.9 (2)	O21-C201-O22 ⁱ	124.9 (7)
O21—Ni—Ni ⁱ	72.1 (1)	C202—C201—O22 ⁱ	116.7 (7)
O22—Ni—N	102.3 (2)		

Symmetry code: (i) -x, -y, -z.

Compound (III)

Crystal data

 $[Ni(C_{10}H_{11}O_2)_2(C_9H_7N)]_2 \qquad D$ $M_r = 1028.5$

Density measured by flotation in KI solution

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
x	y	z	U_{eq}	
0.61870 (4)	0.51310 (2)	0.52872 (4)	0.0295 (2)	
0.6367 (2)	0.5892 (1)	0.4166 (2)	0.040 (2)	
0.5541 (2)	0.4376(1)	0.6245 (2)	0.042 (2)	
0.6492 (2)	0.4541 (1)	0.3886 (2)	0.036 (2)	
0.5444 (2)	0.5720(1)	0.6532 (2)	0.038 (2)	
0.7901 (2)	0.5145 (2)	0.6017 (2)	0.033 (2)	
0.8303 (4)	0.5719 (2)	0.6287 (4)	0.043 (3)	
0.9499 (4)	0.5841 (2)	0.6715 (4)	0.052 (3)	
1.0273 (4)	0.5341 (2)	0.6837 (4)	0.052 (3)	
0.9897 (3)	0.4719 (2)	0.6579 (3)	0.041 (3)	
1.0660 (4)	0.4182 (3)	0.6700 (4)	0.056 (3)	
1.0256 (4)	0.3594 (3)	0.6457 (4)	0.063 (4)	
0.9049 (4)	0.3497 (2)	0.6051 (4)	0.054 (3)	
0.8285 (4)	0.4002 (2)	0.5919 (4)	0.040 (3)	
0.8679 (3)	0.4623 (2)	0.6172 (3)	0.034 (2)	
0.5359 (3)	0.5983 (2)	0.3626 (3)	0.032 (2)	
0.5199 (3)	0.6566 (2)	0.2812 (3)	0.032 (2)	
0.6425 (4)	0.6740 (2)	0.2215 (5)	0.048 (3)	
0.4281 (5)	0.6414 (3)	0.1803 (4)	0.053 (3)	
0.4803 (3)	0.7121 (2)	0.3631 (3)	0.036 (2)	
0.3769 (4)	0.7478 (2)	0.3406 (5)	0.056 (3)	
0.3451 (5)	0.7987 (3)	0.4143 (7)	0.076 (4)	
0.4153 (6)	0.8142 (3)	0.5129 (6)	0.072 (4)	
0.5173 (6)	0.7797 (2)	0.5381 (5)	0.063 (4)	
0.5489 (4)	0.7292 (2)	0.4634 (4)	0.051 (3)	
0.5685 (3)	0.4240 (2)	0.3293 (3)	0.029 (2)	
0.6147 (3)	0.3793 (2)	0.2294 (3)	0.032 (2)	
0.5099 (4)	0.3425 (2)	0.1702 (4)	0.049 (3)	
0.7016 (5)	0.3320 (2)	0.2905 (5)	0.049 (3)	
0.6782 (3)	0.4207 (2)	0.1333 (3)	0.034 (2)	

Mo $K\alpha$ radiation

C206 (C207 (C208 (C209 (C210 (C208 (C209 (C210 (C209 (C209 (C209 (C210 (C209 (C20) (C209 (C209 (C20) (C20) (C209 (C20) (C209 (C20) (C20) (C20) (C209 (C20) (0.7814 (4) 0.8360 (5) 0.7887 (5) 0.6877 (5) 0.6323 (4)	0.4005 (2 0.4384 (2 0.4965 (2 0.5173 (2 0.4801 (2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.053 (3) 0.068 (4) 0.067 (4) 0.072 (3) 0.056 (3)	Table
$\begin{array}{c} \textbf{Table} \\ \textbf{Ni} {=} 011 \\ \textbf{Ni} {=} 021 \\ \textbf{Ni} {=} 021 \\ \textbf{Ni} {=} 021 \\ \textbf{Ni} {=} 021 \\ \textbf{Ni} {=} 022 \\ \textbf{Ni} {=} \textbf{N} \\ \textbf{Ni} {=} \textbf{Ni}^{i} \\ \textbf{011} {=} \textbf{Ni} {=} 021 \\ \textbf{011} {=} \textbf{Ni} {=} 022 \\ \textbf{011} {=} \textbf{Ni} {=} 022 \\ \textbf{012} {=} \textbf{Ni} {=} \textbf{Ni} \\ \textbf{021} {=} \textbf{Ni} {=} \textbf{Ni} \\ \textbf{022} {=} \textbf{Ni} {=} \textbf{Ni} \end{array}$	e 6. Geomet 2.02 2.03 2.00 2.01 2.04 2.73 2 164. 1 90. 2 88. 97. 96. 1 88. 2 88. 97. 97. 96. 1 88. 97. 96. 1 88. 97. 96. 2 165. 98. 82. 96.	ric para 3 (2) 0 (2) 1 (2) 9 (2) 0 (3) 37 (7) 7 (1) 1 (1) 4 (1) 5 (1) 72 (7) 8 (1) 8 (1) 8 (1) 96 (7) 44 (9) 6 (1) 32 (7) 0 (1)	$imeters (Å, °) for ($ $011C101$ $012C101^{i}$ $021C201$ $022C201^{i}$ $C101C102$ $C201C202$ $022NiNi^{i}$ $NNiNi^{i}$ $Ni011C101$ $Ni012C101^{i}$ $Ni022C201^{i}$ $011C101C102$ $021C201C202$ $021C201C202$ $021C201C202$	III) 1.265 (4) 1.250 (4) 1.263 (4) 1.263 (4) 1.522 (5) 1.533 (5) 83.48 (7) 165.70 (9) 108.1 (2) 143.8 (2) 125.5 (2) 123.3 (2) 119.3 (3) 123.2 (3) 117.5 (3) 115.9 (3) 125.2 (3) 118.9 (3)	Ni 011 012 021 022 N C1 C2 C3 C4 C5 C6 C7 C11 C12 C13 C14 C15 C21 C22 C23 C24
	Symmetr	y code: ((i) -x, -y, -z.		C25

Compound (IV)

Crystal data

$[Ni(C_5H_9O_2)_2(C_7H_9N)]_2$	$D_m = 1.25$ (2) Mg m ⁻³
$M_r = 736.2$	Density measured by flo
Triclinic	tion in KI solution
$P\overline{1}$	Mo $K\alpha$ radiation
<i>a</i> = 10.616 (1) Å	λ = 0.71073 Å
b = 11.059 (1) Å	Cell parameters from 3
c = 9.826 (1) Å	reflections
$\alpha = 98.22(1)^{\circ}$	$\theta = 10 - 15^{\circ}$
$\beta = 109.03 (1)^{\circ}$	$\mu = 1.022 \text{ mm}^{-1}$
$\gamma = 62.52 (1)^{\circ}$	T = 299 K
V = 967.5 (2) Å ³	Plate
Z = 1	$0.50 \times 0.40 \times 0.30$ mr
$D_x = 1.264 \text{ Mg m}^{-3}$	Pale green
Data collection	
Rigaku AFC-5 four-circle	$R_{\rm int} = 0.010$
diffractometer	$\theta_{\rm max} = 27.49^{\circ}$
θ -2 θ scans	$h = -13 \rightarrow 13$
Absorption correction:	$k = -14 \rightarrow 14$
by integration from crystal	$l = 0 \rightarrow 12$
shape	5 standard reflections
$T_{\rm min} = 0.67, T_{\rm max} = 0.74$	monitored every 100
4706 measured reflections	reflections

4706 measured reflections 4444 independent reflections 3344 observed reflections $[|F_o| > 3\sigma(|F_o|)]$

Refinement

Refinement on FFinal R = 0.042wR = 0.037S = 3.6243344 reflections 317 parameters

7. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for (IV)

$U_{eq} = \frac{1}{2} \sum_{i} \sum_{i} U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$

	· · · · · ·	, ,	
x	у	z	U_{eq}
0.87537 (4)	0.01927 (4)	1.02957 (4)	0.0441 (3)
0.7447 (2)	0.1288 (2)	0.8481 (2)	0.058 (2)
1.0496 (2)	-0.1018 (2)	1.1894 (2)	0.064 (2)
0.8903 (2)	-0.1484 (2)	0.9093 (2)	0.058 (2)
0.9037 (2)	0.1797 (2)	1.1323 (2)	0.060 (2)
0.7251 (2)	0.0195 (2)	1.1169 (2)	0.045 (2)
0.5933 (3)	0.1228 (3)	1.1185 (3)	0.054 (3)
0.4950 (3)	0.1019 (4)	1.1664 (4)	0.066 (3)
0.5322 (4)	-0.0209 (4)	1.2170 (4)	0.076 (4)
0.6693 (4)	-0.1253 (4)	1.2218 (4)	0.070 (3)
0.7622 (3)	-0.1021 (3)	1.1688 (3)	0.059 (3)
0.5568 (4)	0.2577 (3)	1.0658 (4)	0.073 (3)
0.4582 (7)	0.3741 (5)	1.1221 (7)	0.198 (7)
0.8122 (3)	0.1456 (3)	0.7745 (3)	0.045 (2)
0.7250 (3)	0.2234 (3)	0.6318 (3)	0.058 (3)
0.7592 (5)	0.3420 (4)	0.6370 (5)	0.103 (4)
0.7825 (6)	0.1288 (4)	0.5140 (4)	0.130 (5)
0.5619 (4)	0.2707 (5)	0.6003 (5)	0.145 (6)
0.9916 (3)	-0.2094 (3)	0.8520 (3)	0.046 (2)
0.9893 (3)	-0.3285 (3)	0.7540 (4)	0.059 (3)
1.1163 (7)	-0.3989 (6)	0.7021 (8)	0.236 (9)
0.9674 (8)	-0.4202 (5)	0.8278 (8)	0.206 (9)
0.8530 (7)	-0.2735 (6)	0.6330 (7)	0.295 (8)

Table 8. Geometric parameters (Å, °) for (IV)

m^{-3}	Ni011	2.006 (2)	011C11	1.253 (5)
<u>зш</u>	Ni-012	2.025 (2)	012—C11 ⁱ	1.252 (3)
by flota-	Ni-021	2.021 (2)	O21-C21	1.242 (4)
tion	Ni022	2.010 (2)	022C21 ⁱ	1.256 (5)
	Ni—N	2.042 (3)	C11-C12	1.525 (4)
	Ni—Ni ⁱ	2.7227 (7)	C21—C22	1.521 (4)
rom 38	011—Ni—012	165.0 (1)	O22NiNi ⁱ	79.93 (7)
iom 50	O11-Ni-O21	87.07 (8)	N—Ni—Ni ⁱ	166.00 (6)
	O11-Ni-O22	91.80 (9)	Ni-011-C11	115.1 (2)
	011—Ni—N	102.62 (9)	Ni-012-C11 ⁱ	135.6 (2)
	011—Ni—Ni ⁱ	91.38 (8)	Ni-O21-C21	121.1 (2)
	O12NiO21	89.14 (8)	Ni—O22—C21 ⁱ	128.2 (2)
	O12-Ni-O22	88.23 (9)	O11-C11-C12	119.8 (3)
	O12—Ni—N	92.2 (1)	011—C11—012 ⁱ	123.9 (3)
30 mm	O12—Ni—Ni ⁱ	73.85 (8)	C12—C11—O12 ⁱ	116.3 (3)
	O21-Ni-O22	165.4 (1)	O21-C21-C22	118.2 (3)
	021—Ni—N	94.7 (1)	021—C21—O22 ⁱ	125.0 (3)
	O21—Ni—Ni ⁱ	85.56 (8)	C22—C21—O22 ⁱ	116.8 (3)
	O22—Ni—N	99.7 (1)		
		, , ,		

Symmetry code: (i) -x, -y, -z.

Compound (V)

Crystal data

intensity variation: 1.4%

All H-atom parameters re-

Calculated weights, $w=1/\sigma$

 $\Delta \rho_{\text{max}} = 0.582 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.479 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.324$

fined

 $[Ni(C_5H_9O_2)_2(C_6H_7N)]_2$ $M_r = 708.1$ Triclinic ΡĪ *a* = 10.541 (1) Å b = 10.724 (1) Åc = 9.680 (1) Å $\alpha = 97.20 (1)^{\circ}$ $\beta = 108.48 (1)^{\circ}$ $\gamma = 63.31 (1)^{\circ}$ $\dot{V} = 927.1$ (2) Å³ Z = 1 $D_{\rm r}$ = 1.268 Mg m⁻³

 $D_m = 1.23$ (2) Mg m⁻³ Density measured by flotation in KI solution Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 41 reflections $\theta = 12 - 15^{\circ}$ $\mu = 1.064 \text{ mm}^{-1}$ T = 299 KPrism $0.45 \times 0.40 \times 0.30 \text{ mm}$ Pale green

Data collection	
Rigaku AFC-5 four-circle diffractometer ω scans Absorption correction: by integration from crystal shape $T_{min} = 0.63, T_{max} = 0.75$ 4515 measured reflections 4264 independent reflections 3505 observed reflections $[F_o >3\sigma(F_o)]$	$R_{int} = 0.009$ $\theta_{max} = 27.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = 0 \rightarrow 12$ 5 standard reflections monitored every 100 reflections intensity variation: 1.4%
Refinement	
Refinement on F	All H-atom parameters re-
Final $R = 0.039$	fined
wR = 0.035	Calculated weights, $w=1/\sigma$
S = 3.36	$(\Delta/\sigma)_{\rm max} = 0.252$

3505 reflections

300 parameters

Table 9. Fractional atomic coordinates and equivalentisotropic thermal parameters (Å²) for (V)

 $\Delta \rho_{\rm max}$ = 0.459 e Å⁻³

 $\Delta \rho_{\rm min}$ = -0.341 e Å⁻³

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	,	-	
У		z	U_{eq}
(4) 0.0160	1 (4)	0.96595 (4)	0.0383 (2)
2) 0.1246	(2)	1.1495 (2)	0.054 (2)
2) -0.1024	(2)	0.8042 (2)	0.056 (2)
2) 0.1844	(2)	0.8656 (2)	0.056 (2)
2) -0.1585	(2)	1.0860 (2)	0.055 (2)
2) 0.0250	(2)	0.8791 (2)	0.045 (2)
3) 0.1320	(3)	0.8774 (3)	0.062 (3)
3) 0.1160	(4)	0.8285 (4)	0.078 (3)
4) -0.0083	(5)	0.7803 (4)	0.090 (4)
3) -0.1199	(4)	0.7755 (4)	0.087 (3)
3) -0.1003	(3)	0.8269 (3)	0.066 (3)
4) 0.2669	(4)	0.9290 (4)	0.084 (3)
3) 0.1477	(2)	1.2238 (3)	0.042 (2)
3) 0.2394	(3)	1.3565 (3)	0.062 (3)
5) 0.2604	(5)	1.4012 (5)	0.151 (6)
7) 0.1736	(6)	1.4813 (5)	0.173 (8)
6) 0.3728	(5)	1.3194 (7)	0.254 (6)
3) 0.2204	(2)	0.8543 (3)	0.043 (2)
3) 0.3458	(3)	0.7553 (3)	0.059 (2)
4) 0.4336	(4)	0.7265 (5)	0.129 (4)
5) 0.4312	(4)	0.8172 (7)	0.185 (5)
7) 0.2863	(5)	0.6146 (6)	0.212 (7)
		•	
Geometric pa	ırameter	s (Å, °) for	(V)
2012(2)		1	1 247 (4)
2.012(2)		1 1 ⁱ	1.247 (4)
2.011(2)	012 - C1	1	1.252 (4)
2.007(1) 2.012(2)	021 - C2	.1 01i	1.230 (4)
2.012(2) 2.037(3)	C11_C1	2	1.230(4)
2.037 (3)	C_{1}	2	1.521 (4)
2.7171(7)	C21-C2	.2	1.525 (5)
165.3 (1)	022Ni	—Ni'	86.74 (7)
90.32 (7)	N—Ni—	Ni	169.47 (7)
87.74 (7)	Ni-011	C11	117.7 (2)
101.8 (1)	Ni-012	-C11'	132.2 (2)
88.61 (7)	Ni-021	C21	129.6 (2)
89.07 (7)	Ni—022	-C21 ¹	119.7 (2)
89.19 (7)	011—C1	1-C12	118.8 (3)
92.8 (1)	011—C1	1-012 ¹	124.5 (2)
76.83 (7)	C12C1	1012 ¹	116.6 (3)
165.5 (1)	021–C2	1-C22	117.2 (3)
99.12 (9)	O21—C2	1-O22	125.0 (2)
78.89 (7)	C22-C2	1	117.8 (2)
95.30 (9)			
	$\begin{array}{c} & y \\ (4) & 0.0160 \\ (2) & -0.1246 \\ (2) & -0.1246 \\ (2) & -0.1585 \\ (2) & 0.0250 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.1320 \\ (3) & 0.0458 \\ (3) & 0.2604 \\ (7) & 0.1736 \\ (6) & 0.3728 \\ (3) & 0.2604 \\ (7) & 0.1736 \\ (6) & 0.3728 \\ (3) & 0.2604 \\ (7) & 0.1736 \\ (6) & 0.3728 \\ (3) & 0.2604 \\ (7) & 0.1736 \\ (6) & 0.3728 \\ (3) & 0.2604 \\ (7) & 0.1736 \\ (6) & 0.3728 \\ (3) & 0.2604 \\ (7) & 0.199 \\ (3) & 0.2604 \\ (7) & 0.199 \\ (3) & 0.2604 \\ (7) & 0.199 \\ (3) & 0.2604 \\ (7) & 0.2863 \\ (7) & 0.$	y (4) 0.01601 (4) (2) 0.1246 (2) (2) -0.1024 (2) (2) 0.1844 (2) (2) 0.1844 (2) (2) 0.1844 (2) (2) 0.1844 (2) (2) 0.1844 (2) (2) 0.1844 (2) (2) 0.0250 (2) (3) 0.1320 (3) (3) 0.1320 (3) (4) -0.0083 (5) (5) 0.0433 (3) (4) 0.2669 (4) (3) 0.1477 (2) (3) 0.1477 (2) (3) 0.23244 (3) (5) 0.2604 (5) (7) 0.1736 (6) (6) 0.3728 (5) (3) 0.2458 (3) (4) 0.4336 (4) (5) 0.4312 (4) (7) 0.2663 (5) Feometric parameter 2.012 (2) $022-C2$ 2.037 (3) $C11-C1$ 2.011 (2)	$\begin{array}{c cccc} y & z \\ (4) & 0.01601 (4) & 0.96595 (4) \\ (2) & 0.1246 (2) & 1.1495 (2) \\ (2) & -0.1024 (2) & 0.8042 (2) \\ (2) & 0.1844 (2) & 0.8656 (2) \\ (2) & -0.1585 (2) & 1.0860 (2) \\ (2) & 0.0250 (2) & 0.8791 (2) \\ (3) & 0.1320 (3) & 0.8774 (3) \\ (3) & 0.1320 (3) & 0.8774 (3) \\ (3) & 0.1320 (3) & 0.8774 (3) \\ (3) & 0.1320 (3) & 0.8285 (4) \\ (4) & -0.0083 (5) & 0.7803 (4) \\ (3) & -0.1199 (4) & 0.7755 (4) \\ (3) & -0.1003 (3) & 0.8269 (3) \\ (4) & 0.2669 (4) & 0.9290 (4) \\ (3) & 0.1477 (2) & 1.2238 (3) \\ (3) & 0.1477 (2) & 1.2238 (3) \\ (3) & 0.2394 (3) & 1.3565 (3) \\ (5) & 0.2604 (5) & 1.4012 (5) \\ (7) & 0.1736 (6) & 1.4813 (5) \\ (6) & 0.3728 (5) & 1.3194 (7) \\ (3) & 0.2204 (2) & 0.8543 (3) \\ (3) & 0.3458 (3) & 0.7553 (3) \\ (4) & 0.4336 (4) & 0.7265 (5) \\ (5) & 0.4312 (4) & 0.8172 (7) \\ (7) & 0.2863 (5) & 0.6146 (6) \\ \hline \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ $

Symmetry code: (i) -x, -y, -z.

Compound (VI)

Crystal data

[Ni(C14H13O2Si)2(C18H15P)]2
$M_r = 1607.3$
Monoclinic
$P2_1/n$
a = 14.461 (1) Å
<i>b</i> = 23.432 (1) Å
<i>c</i> = 13.542 (1) Å
$\beta = 112.921 (4)^{\circ}$
$V = 4226.4 (4) \text{ Å}^3$
Z = 2
$D_x = 1.263 \text{ Mg m}^{-3}$
$D_m = 1.25 (1) \text{ Mg m}^{-3}$

Data collection Rigaku AFC-5 four-circle diffractometer θ -2 θ scans Absorption correction: by integration from crystal shape $T_{min} = 0.76$, $T_{max} = 0.84$ 8385 measured reflections 7989 independent reflections 4341 observed reflections $[|F_o|>3\sigma(|F_o|)]$

Refinement

Ni P Si1 Si2 O11 O12 O21 O22

C1 C2 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15

C16

Refinement on F	All H-atom parameters re-
Final $R = 0.044$	fined
wR = 0.035	Calculated weights, $w=1/\sigma$
S = 2.666	$(\Delta/\sigma)_{\rm max} = 0.222$
4341 reflections	$\Delta \rho_{\rm max} = 0.420 \ {\rm e} \ {\rm \AA}^{-3}$
652 parameters	$\Delta \rho_{\rm min} = -0.535 \ {\rm e} \ {\rm \AA}^{-3}$

Table 11. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) for (VI)

$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
x	y	z	U_{ea}	
0.47838 (4)	0.54671 (2)	0.43614 (5)	0.0304 (2)	
0.42624 (8)	0.63672 (5)	0.3538(1)	0.0331 (6)	
0.18655 (9)	0.49288 (6)	0.4903 (1)	0.0393 (7)	
0.60156 (9)	0.61091 (5)	0.7933 (1)	0.0403 (7)	
0.3472 (2)	0.5308 (1)	0.4481 (2)	0.043 (2)	
0.6198 (2)	0.5443 (1)	0.4426 (2)	0.048 (2)	
0.5333 (2)	0.5831 (1)	0.5813 (2)	0.044 (2)	
0.4373 (2)	0.4928 (1)	0.3107 (2)	0.043 (2)	
0.3987 (3)	0.6876 (2)	0.4402 (3)	0.033 (2)	
0.3470 (3)	0.6686 (2)	0.4993 (4)	0.052 (3)	
0.3169 (4)	0.7056 (2)	0.5613 (4)	0.067 (3)	
0.3394 (4)	0.7628 (2)	0.5638 (4)	0.063 (3)	
0.3897 (4)	0.7817 (2)	0.5057 (4)	0.061 (3)	
0.4186 (3)	0.7460 (2)	0.4430 (4)	0.046 (3)	
0.3131 (3)	0.6383 (2)	0.2309 (3)	0.035 (2)	
0.2580 (3)	0.6877 (2)	0.1959 (4)	0.060 (3)	
0.1728 (3)	0.6880 (2)	0.1044 (4)	0.069 (3)	
0.1394 (3)	0.6399 (2)	0.0459 (4)	0.056 (3)	
0.1923 (3)	0.5908 (2)	0.0785 (4)	0.063 (3)	
0.2797 (3)	0.5895 (2)	0.1723 (4)	0.050(3)	
0.5217 (3)	0.6702 (2)	0.3177 (3)	0.039 (2)	
0.6103 (3)	0.6883 (2)	0.3980 (4)	0.059 (3)	
0.6867 (4)	0.7105 (2)	0.3732 (5)	0.084 (4)	
0.6774 (4)	0.7156 (3)	0.2700 (5)	0.100 (5)	

Density measured by flotation in *n*-butanol/ tetrachloromethane Mo $K\alpha$ radiation

Cell parameters from 33

 $0.60\,\times\,0.50\,\times\,0.35$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta = 12-15^{\circ}$ $\mu = 0.592 \text{ mm}^{-1}$ T = 299 KPrism

Dark green

 $R_{\rm int} = 0.017$

 $\theta_{\text{max}} = 27.5^{\circ}$ $h = -18 \rightarrow 18$

 $k = -30 \rightarrow 0$

5 standard reflections

reflections

monitored every 100

intensity variation: 13.2%

 $l = 0 \rightarrow 17$

C17	0.5924 (4)	0.6973 (3)	0.1896 (5)	0.110 (5
C18	0.5143 (4)	0.6753 (2)	0.2141 (4)	0.075 (4
C101	0.3215 (3)	0.4941 (2)	0.4993 (3)	0.037 (2
C102	0.1891 (3)	0.4721 (2)	0.6219 (4)	0.062 (3
C103	0.1185 (3)	0.4371 (2)	0.3891 (4)	0.043 (3
C104	0.0248 (3)	0.4447 (2)	0.3085 (4)	0.051 (3
C105	-0.0295 (3)	0.4016 (2)	0.2439 (4)	0.072 (3
C106	0.0112 (4)	0.3478 (2)	0.2579 (4)	0.080 (4
C107	0.1050 (4)	0.3374 (2)	0.3336 (5)	0.087 (4
C108	0.1570 (3)	0.3829 (2)	0.3981 (4)	0.071 (3
C109	0.1256 (3)	0.5644 (2)	0.4432 (4)	0.044 (3
C110	0.1143 (3)	0.5861 (2)	0.3450 (4)	0.061 (3
C111	0.0654 (4)	0.6371 (2)	0.3077 (4)	0.077 (4
C112	0.0287 (4)	0.6666 (2)	0.3693 (5)	0.099 (4
C113	0.0392 (4)	0.6477 (2)	0.4678 (6)	0.107 (5
C114	0.0880 (4)	0.5958 (2)	0.5045 (4)	0.068 (4
C201	0.5618 (3)	0.5605 (2)	0.6727 (3)	0.033 (2
C202	0.6254 (4)	0.6829 (2)	0.7465 (4)	0.080 (3
C203	0.7215 (3)	0.5847 (2)	0.8996 (3)	0.037 (2
C204	0.7374 (3)	0.5818 (2)	1.0065 (4)	0.055 (3
C205	0.8309 (4)	0.5670 (2)	1.0851 (4)	0.065 (3
C206	0.9075 (3)	0.5556 (2)	1.0550 (4)	0.063 (3)
C207	0.8949 (3)	0.5568 (2)	0.9505 (4)	0.057 (3
C208	0.8027 (3)	0.5712 (2)	0.8732 (4)	0.050 (3)
C209	0.4993 (3)	0.6127 (2)	0.8421 (4)	0.067 (3
C210	0.4525 (5)	0.5669 (3)	0.8525 (7)	0.176 (7)
C211	0.3758 (7)	0.5700 (7)	0.8869 (9)	0.39 (2)
C212	0.3457 (5)	0.6076 (5)	0.9173 (6)	0.26(1)
C213	0.3869 (6)	0.6629 (4)	0.9059 (6)	0.217 (8
C214	0.4664 (6)	0.6626 (3)	0.8706 (6)	0.160 (7

Table 12. Geometric parameters (Å, °) for (VI)

	-	· · · · ·	• •
Ni—P	2.368 (1)	Si1-C101	1.908 (5)
Ni—011	2.001 (3)	Si2-C201	1.914 (4)
Ni012	2.013 (3)	O11—C101	1.249 (6)
Ni—O21	2.002 (3)	O12—C101 ⁱ	1.275 (5)
Ni-022	2.013 (3)	O21-C201	1.259 (5)
Ni—Ni ⁱ	2.7079 (8)	O22C201 ⁱ	1.268 (5)
P—Ni—O11	93.78 (8)	O21NiNi ⁱ	79.19 (8
P-Ni-012	100.23 (9)	O22—Ni—Ni ⁱ	87.17 (8
P—Ni—O21	90.86 (8)	Ni-011-C101	132.0 (2)
P—Ni—O22	103.07 (8)	Ni-012-C101 ⁱ	117.9 (3)
P—Ni—Ni ⁱ	166.66 (5)	Ni-021-C201	129.7 (2)
011—Ni—012	166.0 (1)	Ni-022-C201 ⁱ	119.2 (3)
011—Ni—O21	91.5 (1)	Si1-C101-O11	119.5 (3)
011—Ni—022	88.5 (1)	Si1-C101-O12 ⁱ	116.6 (3)
011—Ni—Ni ⁱ	77.78 (8)	O11-C101-O12 ⁱ	123.9 (4)
012—Ni—O21	87.8 (1)	Si2-C201-O21	116.9 (3)
012—Ni—O22	88.8 (1)	Si2-C201-O22 ⁱ	118.5 (3)
012—Ni—Ni ⁱ	88.35 (9)	O21—C201—O22 ⁱ	124.5 (4)
021—Ni—O22	166.0(1)		

Symmetry code: (i) -x, -y, -z.

In compound (II), the chloroform solvent molecules exhibit rotational disorder. Four possible positions of the Cl atoms around C301, labeled as Cl1—Cl4, were each assumed to have occupation probabilities of 3/4 and were refined with a rigid-body approximation. The relatively large *R* value for (II) may be the result of the disorder of the CHCl₃ molecule.

The programs used to solve the structures were Xtal3.0 FOURR and Xtal3.0 SIMPEL (Hall & Stewart, 1990). The structures were refined using Xtal3.0 CRYSLQ, molecular graphics were produced using Xtal3.0 ORTEP and material produced for publication with Xtal3.0 BONDLA and Xtal3.0 CIFIO. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B) were used for non-H atoms. For the H atoms the values were taken from Stewart, Davidson & Simpson (1965).

This work was supported by the Kurata Research Grant to one of the authors (SO).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55199 (105 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1007]

References

- Bencini, A., Benelli, C., Gatteschi, D. & Zanchini, C. (1980). J. Am. Chem. Soc. 102, 5820-5823.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Hirashima, N., Husebye, S., Kato, M., Maartmann-Moe, K., Muto, Y., Nakashima, M. & Tokii, T. (1990). Acta Chem. Scand. 44, 984-989.
- Kirillova, N. I., Struchkov, Yu. T., Porai-Koshits, M. A., Pasynskii, A. A., Antsyshkina, A. S., Minacheva, L. Kh., Sadikov, G. G., Idrisov, T. Ch. & Kalinnikov, V. T. (1980). *Inorg. Chim. Acta*, 40, 115-119.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- Uekusa, H., Ohba, S., Saito, Y., Kato, M., Steward, O. W., Tokii, T. & Muto, Y. (1990). Acta Cryst. C46, 1805-1812.
- Yamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. & Steward, O. W. (1991). Acta Cryst. B47, 344-355.

Acta Cryst. (1992). C48, 1894-1896

Structure of [2-(Fluorodimethylstannyl)ethyl]diphenylphosphine Oxide

HANS PREUT, BERND GODRY AND TERENCE MITCHELL

Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, Germany

(Received 22 May 1992; accepted 1 July 1992)

Abstract

The atoms bound to Sn form a distorted trigonal bipyramid with the O and F atoms in the apical positions [Sn—O 2.454(3), Sn—F 2.035(2) Å; O—Sn—F 172.66(9)°] and the C atoms in the equatorial positions [Sn—C 2.123(5), 2.124(4), 2.158(3) Å; C—Sn—C 123.9(2), 115.7(2), 118.2(2)°; C—Sn—F 93.6(1), 94.3(1), 97.3(1)°; C— Sn—O 80.5(1), 85.5(1), 89.2(2)°]. The atoms bound to P form a slightly distorted tetrahedron with bond angles in the range 106.2(2)–112.1(2)°. The five-membered ring has an envelope conformation; the atoms P, O, Sn and C(3) are nearly coplanar.

Comment

The compounds [2-(bromodimethylstannyl)ethyl]diphenylphosphine sulfide (Preut, Godry & Mitchell, 1992*a*) and [2-(chlorodimethylstannyl)ethyl]diphenylphosphine

© 1992 International Union of Crystallography